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A pair of two-level systems initially prepared in different thermal states and coupled to an external reversible
work source do not in general reach a common temperature at the end of a unitary work extraction process. We
define an effective temperature for the final nonequilibrium but passive state of the bipartite quantum system
and analyze its properties.
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I. INTRODUCTION

Consider the thermodynamic problem of work extraction
�1,2� from two systems at different temperatures T1 and T2
�let T1�T2� by coupling them with a reversible work source.
It is assumed that internal energy of each system is Ui
=CiTi, where Ci is independent of temperature. The process
of work extraction stops when the two systems reach a com-
mon final temperature Tf. Work performed is given by the
difference of initial and final energies:

W0 = C1T1 + C2T2 − �C1 + C2�Tf . �1�

Now to extract maximal work, the process is assumed to be
thermally isolated in which thermodynamic entropy of the
total bipartite system is preserved. This criterion yields the
value of the final temperature as Tf = �T1��/�1+���T2�1/�1+��,
where �=C1 /C2.

One can discuss a cyclic process which proceeds in the
following two steps: �i� the two systems prepared as above
and coupled to a reversible work source are used to extract
an amount of work given in Eq. �1� whence the systems
reach a common final temperature; �ii� the systems are then
brought back to their initial states by separating them from
the work source and making contact with thermal baths at T1
and T2, respectively. In the second step, the system 1 absorbs
heat from the hotter bath and system 2 rejects some heat to
the cold bath. The efficiency of this cyclic process is

���,�� = 1 +
1

�

� − �1/�1+��

1 − �1/�1+�� , �2�

where �=T2 /T1. This system behaves very similar to a cycle
discussed by Leff �3� which is made up of a sequence of
infinitesimal Carnot cycles and where both the heat source
and the sink have a finite heat capacity.

The problem of work extraction has also been addressed
from a quantum-mechanical point of view �4–6�. Although
the possibility of a quantum heat engine and validity of ther-
modynamic bounds has been recognized since the 1950s �7�,
the recent developments in nanotechnology and quantum in-
formation processing have contributed to enhanced interest
in quantum thermodynamic machines �8,9�. Alongside, such
models provide insight into fundamental questions about
thermodynamics such as Maxwell’s demon and universality
of the second law �10–12�. Many models employ few-level
quantum systems as the working medium, such as quantum

harmonic oscillators, spin-systems, particle-in-box and so on
�13–18�. Usually the cycle is a quantum generalization of the
well-known classical Carnot, Otto, Brayton heat engines
which follow four-step cycles. In another class of models,
instead of the two classical or macroscopic systems as dis-
cussed in the preceding paragraph, one can form a two-step
engine using two quantum systems �6�. Recently, such a
quantum heat engine employing two two-level systems
�TLS� was discussed and implications of the optimization of
work on the structure of the engine were highlighted �19�.

However, quantum engines being small systems, the va-
lidity of thermodynamic behavior is not guaranteed. For in-
stance, after work extraction in the latter class of models, the
two systems may not reach mutual equilibrium. In this paper,
we further discuss the two-step model for work extraction
using two TLS, focusing on the final passive state �which is
in general a nonequilibrium state� from a thermodynamic
perspective. We define an effective temperature for this state
and analyze its properties. The paper is organized as follows.
In Sec. II, we introduce the model of quantum heat engine.
In Sec. II A, the temperatures of subsystems are evaluated;
the validity of thermodynamic definitions is enforced by de-
riving the specific heats of subsystems in Sec. II B. Section
III proposes a definition for effective temperature of the
composite system, which is calculated explicitly in different
regimes of parameter values. We also compare some of the
other definitions in literature for effective temperature of
nonequilibrium systems in Sec. IV. Concluding ideas are
given in Sec. V.

II. QUANTUM MODEL FOR WORK EXTRACTION

Consider two TLS labeled R and S with Hamiltonians HR
and HS prepared in thermal states �R and �S corresponding to
temperatures T1 and T2. The Hamiltonian of the total system
is H=HR � I+ I � HS. The initial state of the composite sys-
tem is �in=�R � �S. The eigenvalues of H are �0,a2 ,a1 ,a1
+a2� given that energy eigenvalues of HR and HS are �0,a1�
and �0,a2�, respectively. The eigenvalues of the initial den-
sity matrix are �r1s1 ,r1s2 ,r2s1 ,r2s2�. Here the probability to
find each system in its excited state is

r2 =
1

1 + ea1/T1
, s2 =

1

1 + ea2/T2
, �3�

with ground-state probabilities being r1= �1−r2� and s1
= �1−s2�. We set Boltzmann constant kB=1.
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The initial mean energy of the composite system is U
=a1r2+a2s2. Let us for concreteness choose a1�a2. Within
the approach based on quantum thermodynamics, the process
of work extraction is a unitary process which preserves not
only the magnitude of the entropy but also all eigenvalues of
the density matrix describing the state of the system. It has
been shown in earlier works �4,6,19� that under such a
process, the state which corresponds to a minimum value
of the final energy is � f =�S � �R, with eigenvalues
�r1s1 ,r2s1 ,r1s2 ,r2s2�. Effectively, it means that the two sys-
tems exchange or swap their initial probability distributions
in the final state. In other words, work performed is maxi-
mum if U�=a1s2+a2r2 and is given by

W�a1,a2� = U� − U = �a1 − a2��s2 − r2� . �4�

Net work is extracted if W�0 which requires the following
condition:

s2 � r2 ⇒
T1

T2
�

a1

a2
. �5�

The efficiency of this engine is �=1−a2 /a1, which is inde-
pendent of temperature and its upper bound is Carnot value.

A. Temperatures of subsystems after work extraction

Now we study temperatures in the final state. After work,
the mean energy of subsystem 1 is U1�=a1s2, and U2�=a2r2.
Let us consider two such setups specified by the pair of en-
ergy parameters �a1 ,a2� and �a1+da1 ,a2+da2�. Comparing
the final states after work extraction, the change in energy of
subsystem 1 is

dU1� = s2da1 + a1
ds2

da2
da2. �6�

We follow the standard interpretation of work as the change
in mean energy due to shift in energy levels at constant prob-
abilities �16,20,21�. Similarly, heat is defined to be the
change in mean energy when the energy levels stay fixed, but
probability of occupation changes. Thus, the heat contribu-
tion for system 1 is given by

dQ1� = a1
ds2

da2
da2. �7�

Similarly for subsystem 2, we have

dQ2� = a2
dr2

da1
da1. �8�

Let us now study entropy of each subsystem. In the ini-
tial state, the entropies of subsystems are given by
S1=−�r1 ln r1+r2 ln r2� and S2=−�s1 ln s1+s2 ln s2�, respec-
tively. After work, due to exchange of probabilities between
the subsystems, we have S1�=S2 , S2�=S1. Thus, for sub-
system, say 1, the change in entropy of the final state under
a variation of the parameter a2 is

dS1� = dS2 �9�

=
a2

T2

ds2

da2
da2. �10�

Now we evaluate the final temperature of system 1 as

T1� �
dQ1�

dS1�
= T2

a1

a2
. �11�

Similarly, we obtain for system 2

T2� = T1
a2

a1
. �12�

These values of temperatures are precisely which may be
obtained directly from the final probability distributions of
the TLS, because a TLS can always be assigned an effective
temperature.

Using Eq. �5�, it can be seen that after work extraction,
the hotter subsystem 1 cools down �T1��T1�, whereas the
relatively cold subsystem 2 now has a higher temperature
�T2��T2�. Note that the sign of difference �T1�−T2�� is not
determined; it is possible to have �T1��T2��. But this does not
violate the second law because condition �5� also ensures
that energy flows from the hot to the cold system. Thus, the
change in energy of system 1, �U1=a1�s2−r2��0, and the
corresponding change in system 2 is �U2=a1�r2−s2��0.

B. Heat capacity of subsystems

The canonical heat capacity of subsystem 1 in the final
state is related to the fluctuations of energy in a well-known
way �2�. However, heat capacity may also be evaluated as
follows. Consider the final temperature as function of a1 and
a2 �Eq. �11��. Then a change in temperature resulting from a
variation in these parameters is

dT1� =
T2

a2
da1 −

a1T2

�a2�2da2. �13�

Then keeping a1 fixed �which is equivalent to keeping vol-
ume of subsystem 1 fixed, because change in a1 for sub-
system 1 in the final state is interpreted as work; see Eq. �6��,
the heat capacity �at constant volume� in the final state of
system 1 is

C1� = � �U1�

�T1�
	

a1

�14�

=C2, �15�

where we have used the following identity:

−
ds2

da2
=

C2T2

�a2�2 . �16�

Here C2 is the canonical heat capacity of the subsystem 2 in
its initial state at temperature T2. Similarly, we get the result
C2�=C1. Thus, upon swap transformation, the specific heats
of the two subsystems also get exchanged.
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To recapitulate, the standard thermodynamic process in
which two macroscopic bodies at different temperatures are
coupled to a work source, the final temperatures of the two
bodies are said to become equal. In the quantum framework,
the subsystems in general do not reach mutual thermal equi-
librium. In the next section, we ask the following: can the
whole bipartite system be characterized by a global effective
temperature in the final state, even though it is a nonequilib-
rium state with subsystems at different temperatures?

III. “TEMPERATURE” FOR THE BIPARTITE SYSTEM

For subsystem i, we observed in the previous section that
temperature can be defined thermodynamically. In this sec-
tion, we extend the thermodynamic definition to the nonequi-
librium final state of the composite system.

For convenience, we define a2 /a1=	. So the final tem-
peratures are rewritten as T1�=T2 /	 and T2�=T1	. Thus, for
given reservoir temperatures �T1 ,T2�, the final temperatures
of subsystems are determined by a single parameter 	, which
is also related to the efficiency of the engine 	=1−�. Con-
sider different final and initial states which are characterized
by the same parameter 	 but which may yield different
amounts of work.

At a given value of 	, the changes in a1 and a2 are related
as

da2 = 	da1. �17�

Thus, the heat exchanged by system 1 in such a process can
be rewritten from Eq. �7� as

dQ1� = a1
ds2

da2
	da1 �18�

=a2
ds2

da2
da1. �19�

Also, Eq. �8� yields dQ2� Then the total heat exchanged by
bipartite system is dQ�=dQ1�+dQ2�.

Similarly, the von-Neumann entropy of the bipartite sys-
tem is the sum of subsystem entropies, S�=S1�+S2�=S1+S2
and the variation in total entropy is

dS� = 
�dS1

da1
	 + 	�dS2

da2
	�da1, �20�

at a given 	, using Eq. �17�. Then we define the effective
temperature as the ratio of heat variation to the entropy varia-
tion, T�� dQ�

dS�
�, yielding

T =

a2� ds2

da2
+

dr2

da1
	

� �a2�2

a1T2

ds2

da2
+

a1

T1

dr2

da1
	 . �21�

Using Eq. �16� and −dr2 /da1=C1T1 / �a1�2, we finally get

T =
C2T1� + C1T2�

�C1 + C2�
. �22�

The above formula is the main result of the present paper. It
resembles the thermodynamic expression if the two systems
at temperatures T1� and T2� with constant heat capacities C2
and C1, respectively, come to a common temperature T with-
out doing any work �see Eq. �1��. Now we evaluate the ef-
fective temperature for the case of two TLS and discuss its
features. The canonical heat capacity of a TLS is given by
the well-known expression

Ci = � ai

Ti
	2 exp�ai/Ti�

�1 + exp�ai/Ti��2 . �23�

We first discuss the limit when ai /Ti=x
1. Then Ci�x�
�x2 /4 and the ratio C1 /C2��→ �� /	�2. Thus, the efficiency
is given by �=1− �


�
. The effective temperature in this re-

gime is

T

T1
=


�

�1 + ��
�1 + �� . �24�

At Carnot limit, �→1 and T /T1= �1+�� /2. However, note
that this formula holds in general also, because Carnot limit
implies a1 /T1→a2 /T2 and so C1 /C2→1. Here the extracted
work is vanishingly small and the final temperature is ex-
pected to be �T1+T2� /2. At the other extreme, for �→�2, we
have T /T1= ��+�2� / �1+�2�.

In other words, when a2→a1, W→0 �see Eq. �4��. Then
T1�=T2 and T2�=T1 in this limit. In this case, the effective
temperature is simplified to

T

T1
=

�� + ��
�1 + ��

. �25�

Finally, we make the following observations:
�i� It is interesting to note that the effective temperature is

a weighted average of the subsystem temperatures after work
extraction.

�ii� The overall temperature is the same as the subsystem
temperature when the latter are also equal to each other. This
corresponds to 	=
�, which implies the well-known
Curzon-Ahlborn efficiency �22�.

�iii� At the global maximum of work, the conditions
�W /�a1=0 and �W /�a2=0 determine optimal values a1

� and
a2

� as well as the condition

dr2

da1
=

ds2

da2
�26�

holds. So we have 	�=
� /��, where now �� is determined
from using optimal values a1

� and a2
�. Then it follows from

Eq. �21� that

T� =
2T1�T2�

T1� + T2�
. �27�

This may be expressed as

T�

T1
=

2
��

�1 + ���

� . �28�
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�iv� Figure 1 shows the behavior of subsystem and effec-
tive temperatures as function of efficiency. Particularly, T
shows a nonmonotonic trend. For a given value of �, T in
Fig. 1 corresponds to that engine setup which yields the
maximum work. From numerical calculations, it is observed
that the temperature has a minimum at an efficiency which is
bounded from below by Curzon-Ahlborn value.

IV. EFFECTIVE TEMPERATURES: A COMPARISON

The definition of nonequilibrium temperature is not
unique for a given situation and one can envisage different
definitions. We compare with our definition two other defi-
nitions of the effective temperature from literature that are
relevant to our system. The first candidate is the spectral
temperature �9�. This definition depends only on the energy
probability distribution and the energy spectrum of the sys-
tem and is applicable even for nonequilibrium situations.
Thus, for a nondegenerate spectrum, the inverse of spectral
temperature is defined to be

1

Ts
= − �1 −

P0 + PM

2
	−1

�
i=1

M �Pi + Pi−1

2
	 ln Pi − ln Pi−1

Ei − Ei−1
,

�29�

where Boltzmann’s constant has been set to unity. Pi is the
probability to occupy a level with energy Ei and index for the
levels ranges from 0 �ground state� to M. For our case of two
TLS in the final state after work extraction, using the values
�Ei���0,a2 ,a1 ,a1+a2� and �Pi���r1s1 ,r2s1 ,r1s2 ,r2s2�, the
�inverse� spectral temperature is explicitly given by

1

Ts
=

1

T1�

�	 − ��
�	 − 	2�

x

�1 + x�
+

1

T2�

1

�1 + x�
, �30�

where x= �r1+s1−2r1s1�. The special cases include the fol-
lowing: Carnot limit, when 	→� and so Ts= �1+x�T2�; when

	→0, Ts→0. Finally, for CA efficiency �	=
��, the spectral
temperature is equal to the subsystems’ temperature. In gen-
eral, the behavior of Ts as shown in Fig. 2 is quite different
from the proposed definition.

The second definition we consider is also called as the
contact temperature �Tc�. If a general nonequilibrium system
whose different parts may be at different local temperatures
is brought in contact with such a heat bath, that some parts of
the system give heat to the latter and some absorb heat from
it, so that the net heat transferred between the system and the
bath is zero, then the temperature of that bath defines Tc �23�.
In other words, energy conservation holds for the system and
different parts of it come to a common temperature equal to
that of the heat bath. Thus, for two TLS, we impose that the
total mean energy calculated with canonical distributions for
each TLS corresponding to a temperature Tc is equal to the
final mean energy U�=a1s2+a2r2. The temperature obtained
numerically is depicted in Fig. 2. The behavior of the contact
temperature is closer to the proposed definition in regions
where subsystem temperatures are equal or nearly to each
other. However, toward the extreme values of the engine
efficiency, the two temperatures take on different values.

V. CONCLUSIONS

The notion of temperature is well understood in the do-
main of equilibrium thermodynamics. However, its extension
to nonequilibrium situations is nontrivial. See, for example,
�24� for a review of effective temperatures in nonequilibrium
situations. In this paper, we have discussed a quantum heat
engine in which two TLS prepared in different thermal states
undergo a unitary thermally isolated process and deliver
work to an external work source. The final state of the two-
TLS system is passive �i.e., no further work can be extracted
from it� but a nonequilibrium state where each subsystem
may have a different local temperature. We have proposed a
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FIG. 1. For T2=1 and T1=9, the subsystem temperatures T1� ,T2�
and the effective temperature T of the composite system evaluated
at maximum work corresponding to a given efficiency. T is given by
a weighted average over the subsystem temperatures and so its
curve lies in between the curves for subsystem temperatures. All the
three temperatures are equal at Curzon-Ahlborn efficiency.
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FIG. 2. Comparison between other definitions of nonequilibrium
temperatures for T2=1 and T1=9. T is same as in Fig. 1 while Ts

denotes the spectral temperature and Tc, the contact temperature, as
defined in Sec. IV. The inset shows the enlarged region around the
point where all three temperatures are equal, which is at �=1−
�
=0.6667.
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thermodynamic definition to calculate effective temperature
of the composite system in its final state. The obtained for-
mula is very similar to the one expected on thermodynamic
grounds. The proposed definition is compared with the spec-
tral temperature, which seems to have a widely different be-
havior. The other definition called contact temperature ap-
pears to have some semblance to our definition. All the three
definitions converge for mutual equilibrium, but at Carnot
limit or the vanishing efficiency they differ from each other
significantly. Future experiments on measurement of tem-
peratures in such systems may decide between the different
definitions. Finally, it will be interesting to extend these ideas

to more elaborate models such as involving entanglement
between the TLS �25�. It is hoped that the present analysis
will help to understand thermodynamic behavior revealed by
quantum heat engines.
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